Пятница, 19.04.2024
Мой сайт
Форма входа
В отличие от животных (гетеротрофных) организмов растения принадлежат к автотрофам, т. е. обладают способностью образовывать органические вещества из неорганических в процессе фотосинтеза. Правда, некоторые водоросли из числа звгленовых, одноклеточных зеленых, желто-зеленых и пирофитовых водорослей утрачивают эту способность и переходят к гетеротрофному способу питания, но это свойство у них уже вторичного происхождения.
У водорослей фотосинтетический аппарат представлен разными уровнями организации: от морфологически неоформленного (у синезеленых) до типичных хлоропластов (у зеленых водорослей).
Хлоропласты, первоначально названные хроматофорами (и сейчас еще этот термин сохраняется в научной литературе), представляют собой специфические органеллы растительной клетки, несущие зеленый пигмент хлорофилл, существующий в нескольких формах (а, b, с, d, е). Помимо него, в хлоропластах у красных, желто-зеленых, бурых и других водорослей присутствуют и такие пигменты, как фикоцианин, фикоэритрин, фикоксантин, р-к а р отин, ксантофилл и т. д., которые часто маскируют основную зеленую окраску красной, желто-зеленой, золотистой, бурой и т. д.
В противоположность высшим растениям хлоропласты водорослей отличаются большим разнообразием по форме, числу, местоположению в клетке и, как теперь выясняется, даже по внутренней организации. Хлоропласты у водорослей могут быть чашевидными, лентовидными, спиралевидными, пластинчатыми, звездчатыми и т. д. Как правило, в подвижных клетках у зеленых водорослей присутствует всего один, хлоропласт; у водорослей из других отделов их бывает два и больше; у эвгленовых и динофлагеллат в молодых клетках — от 50 до 80, а в старых 200—300. Хлоропласты занимают в клетке либо центральное, либо постенное положение.
Хлоропласты у водорослей, как и у других растений, окружены оболочкой и состоят из основного вещества (стромы) и погруженных в него пластинчатых, или ламеллярных, структур, а также различного рода включений, отличающихся по размерам, форме и составу своего содержимого.
Оболочка хлоропласта толщиной порядка 100—150 А образована двумя одиночными мембранами. Иногда у бурых, золотистых, желтозеленых, диатомовых водорослей этот барьер усложняется за счет примыкающего к хлоропласту канала зндоплазматической сети, в результате чего вокруг него возникает четырехмембранная система, а у панцирных жгутиконосцев из группы динофлагеллат и эвгленовых водорослей мембрана канала эндоплазматической сети настолько тесно прилегает к наружной мембране оболочки хлоропласта, что граница между ними становится неразличимой, создавая полное впечатление существования здесь трехмембранной системы.
Расположенные в строме пластинчатые структуры (ламеллы) по виду напоминают миниатюрные уплощенные мешочки, которые называют тилакоидами (греч. «тилакоидес» — мешковидный) или дисками. Они придают хлоропласту характерную слоистость, что очень хорошо видно на поперечных срезах. Ширина дисков у водорослей разных видов колеблется от 70 до 600 А, а иногда и более.
В отличие от высших растений в хлоропластах у водорослей выявлено большое разнообразие в расположении дисков. Они могут быть одиночными, как у красных водорослей, и опоясывать весь хлоропласт, ориентируясь параллельно его оболочке (поэтому на поперечных срезах выявляется система в виде длинных обособленных пластинок). У остальных водорослей, за исключением зеленых, диски собираются в пачки по 2—4 и могут лежать там порознь или тесно прилегать друг к другу. У харовых и зеленых водорослей число дисков в пачке достигает нескольких десятков (у нителлы — от 4 до 20, у хлорококка— от 2 до 40). Причем эти колебания в значительной степени зависят от возраста органеллы (по мере ее старения число дисков в пачке увеличивается), интенсивности освещения (при низкой освещенности число дисков в пачке больше, чем при высокой) и даже от качества света.
Увеличение числа дисков в пачке, как правило, сопровождается их укорочением. В хлоропластах некоторых зеленых водорослей можно наблюдать, как короткие многодисковые пачки, чередуясь с единичными длипными дисками, упорядочиваются в штабеля или стопки — структуры, получившие название граноподобных образований, так как по внешнему виду они очень напоминают компоновку дисков в гранах, свойственных хлоропластам высших растений.
Диски являются теми структурами, к которым прикрепляются пигменты и в которых осуществляется фотосинтез. Не исключено, что тот или иной способ группировки дисков зависит в значительной степени от особенностей качественного состава пигментов, который, как yжe говорилось, у водорослей отличается большим разнообразием.
В самое последнее время в хлоропластах были обнаружены своеобразные трубчатые элементы — микротрубочки сечением около 260 А, которые обычно располагаются вдоль оболочки органеллы группами по 5—6 штук в каждой и, очевидно, выполняют роль каркаса.
В строме хлоропласта, помимо пластинчатых структур, выявлены более плотные зоны, представляющие скопления ДНК, многочисленные, рассеянные, мелкие (в среднем порядка 140 А) частицы — рибосомы, глобулы различного размера, формы и состава, а также зерца крахмала, которые образуются в ходе фотосинтеза.
Обладая всем необходимым для осуществления белкового синтеза, хлоропласты относятся к числу самовоспроизводящихся органелл. Они размножаются путем перетяжки надвое и, в очень редких случаях, почкованием. Эти процессы приурочены к моменту клеточного деления и идут столь же упорядоченно, как и деление ядра, т. е. события следуют здесь в строгой последовательности одно за другим: стадия роста сменяется периодом дифференциации, за которым наступает состояние зрелости, или готовности к делению.
Хлоропласты являются единственным местом отложения крахмала в клетке, причем у водорослей часть его, и весьма значительная, концентрируется вокруг специфических образований, получивших название пиреноидов (греч. «пирен» — косточка и «эйдос» — вид, т. е. имеющий вид косточки). Пиреноиды самым тесным образом, как структурно, так и функционально, связаны с хлоропластом.
Среди водорослей только сине-зеленые целиком состоят из беспиреноидных форм. Пиреноиды, как правило, отсутствуют и в клетках высших растений. Исключение составляет лишь небольшая группа мхов из порядка антоцероталес.
Пиреноид представляет собой плотное образование белковой природы, окруженное снаружи обкладкой в виде сплошного кольца или отдельных пластинок в числе от двух и более, обычно крахмальной природы. Однако у бурых водорослей она образована водорастворимым полисахаридом — ламинарином; у красных — особой формой крахмала, так называемым багрянковым крахмалом; у эвгленовых — парамилоном; у хризомонад — липидами. Изредка, как у желто-зеленых, пиреноиды лишены обкладки, и поэтому их называют голыми. Обкладка с ее высоким коэффициентом преломления света делает пиреноиды очень заметной структурой клетки, и они первыми бросаются в глаза при просмотре под микроскопом живого материала.
Световой микроскоп не давал возможности проникнуть в детали строения пиреноида, и лишь благодаря электронному микроскопу удалось внести ясность в зтот вопрос. Оказалось, строма пиреноида плотнее стромы хлоропласта; она пронизана либо одиночными, либо собранными в пачки дисками, которые представляют собой продолжение дисков хлоропласта, и не отделена мембранным барьером. По сути, границей между хлоропластом и пиреноидом условно служит его обкладка.
В голых же пиреноидах этот вопрос трудно решить даже на ультраструктурном уровне, поскольку единственными критериями остаются слабоуловимые различия в плотности стромы и поведении ламеллярной системы, которая при переходе в пиреноид претерпевает некоторую редукцию в числе дисков, сопровождающуюся увеличением их ширины.
Обычно пиреноиды располагаются в хлоропласте (погруженные пиреноиды). Реже они лежат вне его (выступающие пиреноиды), что особенно характерно для красных водорослей, некоторых родов эвгленовых, пирофитовых, желто-зеленых и бурых водорослей.
Чаще всего хлоропласт содержит только один пиреноид, хотя их может быть два и более, а у отдельных водорослей (спирогира, кладофора) их число даже доходит до нескольких десятков.
Форма пиреноидов отличается крайним разнообразием: от круглой и многоугольной до палочковидной.
Размеры пиреноидов колеблются в широких пределах: мелкие не превышают в диаметре 3 мкм, а крупные достигают 10—15 мкм, причем этот показатель варьирует от вида к виду, у особей внутри одного вида в зависимости от химического состава среды, интенсивности света, температуры и т. д. и даже в пределах одной клетки (наряду с одним крупным может существовать несколько мелких), на что, в частности, влияет возраст пиреноидов (молодые пиреноиды всегда мельче закончивших свой рост старых).
Новые пиреноиды могут возпикать тремя различными способами: делением надвое, фрагментацией крупного родительского пиреноида на большое число мелких дочерних и в результате новообразования. Причем в первом и во втором случаях пиреноид не всегда распадается на равновеликие части, что является еще одной причиной наличия в клетке пиреноидов разного размера.
Часто в пределах одного и того же организма можно наблюдать одновременно все способы образования новых пиреноидов.
Сейчас накопилось уже много фактов, свидетельствующих о том, что пиреноид является не просто местом скопления крахмала или иных резервных веществ, а той зоной хлоропласта, в которой или при участии которой наиболее активно осуществляется их синтез. Возникнув первоначально как центр образования запасных веществ и в первую очередь как центр крахмалообразования в хлоропласте, пиреноид как бы остановился на полпути в своем поступательном движении, не успев получить того структурного воплощения, которое присуще типичным органеллам.
В дальнейшем развитие клетки цошло не по линии совершенствования этого образования, а в направлении создания качественно иной, менее громоздкой структуры с аналогичными функциями, о чем свидетельствует отсутствие пиреноидов в хлоропластах растений, занимающих более высокую ступень развития по сравнению с водорослями.
У подвижных или утративших подвижность клеток на переднем конце тела часто можно наблюдать небольшое, но очень заметное, благодаря интенсивно-красной или ярко-оранжевой окраске, пятно — стигму, или глазок. Такая окраска объясняется скоплением здесь большого количества каротина.
В одних случаях (у зеленых, золотистых, бурых, некоторой части желто-зеленых водорослей) стигма располагается в хлоропласте, а в других (у эвгленовых, панцирных жгутиконосцев) — за его пределами, в непосредственной близости от двигательного аппарата клетки.
Вот, собственно, и все сведения, которые удалось собрать о стигме за долгую историю ее изучения с помощью светового микроскопа.
Электронный микроскоп намного расширил границы наших знаний в этой области. С его помощью не только были раскрыты тайны строения, но и обнаружены такие особенности тонкой организации, которые убедительно свидетельствуют о существовании стигм разной степени сложности.
Основу стигмы составляют плотные, разного диаметра (от 750 до 6600 A) пигментонесущие глобулы в числе от 5—6 до нескольких десятков, которые располагаются плотными рядами (их иногда насчитывается до 9). Такой тип строения стигмы, хотя он наиболее распространен, считается самым примитивным.
Явным признаком усложнения стигмы следует признать группировку глобул по 3—5 в комплексы, отграниченные друг от друга Тонкой мембраной, что наблюдается у эвгленовых водорослей.
Еще более сложной считается организация стигмы у некоторых панцирпых жгутиконосцев, поскольку, помимо комплексов глобул, у них имеется необычного вида пластинчатое тело. Оно состоит из целой серии параллельно расположенных, сообщающихся между собой, уплощенных мешочков, которых иногда бывает до 50, причем самые крайние из них переходят в находящийся поблизости канал эндоплазматической сети. Да и каждый комплекс глобул в отдельности несколько сложнее по своей организации, чем у эвгленовых, так как состоит не из одного, а из двух рядов глобул, промежуток между которыми заполняется зернистым веществом, и вместо одиночной мембраны окружается оболочкой, образованной из двух мембран.
Среди панцирных жгутиконосцев встречаются организмы и с очень сложно устроенной стигмой, представляющей многокомйонентную систему, куда входят линзовидное тело, ретиноид — тело, заполненное определенным образом ориентированными фибриллами, плотные глобулы. Таким образом, свет, попадая на линзу, фокусируется и затем концентрированным пучком посылается через ретиноид на глобулу, т. е. приходит туда в преобразованном виде.
Основной функцией стигмы считается улавливание и до некоторой степени, очевидно, преобразование света, необходимые для определенной ориентации тела водоросли в пространстве. Стигму по ее роли в клетке можно уподобить локаторному устройству, принцип работы которого в данном случае, к сожалению, пока не выяснен. Поэтому сейчас еще преждевременно обсуждать вопрос о значепии того или иного способа организации этой системы, ибо хорошо известно, что сложность и громоздкость конструкции не всегда являются показателем ее совершенства, рациопальности и надежности в работе, тем более что выявлено много водорослей, которые лишены стигмы, но между тем прекрасно реагируют на свет.
Почти все водоросли (исключение составляют сине-зеленые и красные) могут образовывать клетки, подвижные в течение всей своей жизни или только на определенном этапе жизненного цикла (от нескольких часов до нескольких минут).
Подвижные клетки отличаются от неподвижных целым рядом особенностей организации, прежде всего появлением особого двигательного аппарата.
Перемещение в жидкой среде осуществляется при участии особых структур, представляющих собой либо временные (ризоподии), либо постоянные (реснички, псевдоцилии, жгутики) выросты клетки.
Ресничками называют многочисленные (от нескольких десятков до нескольких сотен) короткие (порядка 5—10 мкм) образования, совершающие энергичные колебательные движения. Псевдоцилии, или ложные реснички, имеют вид длинных, очень тонких, неподвижных волосков, которые обнаруживаются чаще всего только после подкраски. Под жгутиками понимают длинные (в несколько десятков микрометров) малочисленные образования с меньшей, чем у ресничек, частотой биений и с волнообразным характером движения, почему их иногда еще называют ундулиподиями (лат. «унда» — волна, «подиум» — возвышение).
Перечисленные образования — единственные клеточные структуры, расположенные за пределами самой клетки.
В дальнейшем речь пойдет исключительно о жгутиках, истому что они наиболее характерны для водорослей и принципиально ничем не отличаются от ресничек и псевдоцилии.
Среди водорослей чаще всего встречаются формы дву- или одножгутиковые, реже четырех-, восьмиячгутиковые и совсем единичны с большим числом жгутиков, как у дербезии. У некоторых золотистых водорослей между двумя подвижными жгутиками располагается третий — неподвижный жгутик с расширением на конце, или гаптонема. С ее помощью клетка прикрепляется к субстрату.
По соотношению длины жгутиков у клетки различаются водоросли равножгутиковые и разножгутиковые, или гетероконты (рис. 12, 1, 2). Иногда, например у эвглен, второй жгутик настолько редуцируется, что удается обнаружить лишь его короткий пенек. Жгутики могут быть направлены вперед по ходу движения клетки) что свойственно большинству равножгутиковых форм. У разножгутиковых нередко наблюдается разница в частоте биений (гетеродинамизм) и в положении по отношению к клетке: обычно длинный (двигательный) жгутик направлен вперед и работает энергичнее, чем короткий (рулевой), который обращен в сторону или назад по ходу движения организма. Считается, что двигательный жгутик обеспечивает поступательное движение клетки, а рулевой — корректирует его направление.
Как правило, вся жизнь жгутиконосцев проходит в непрерывном движении. Некоторые из них развивают скорость до 500 мкм/сек и преодолевают по 5—10 м в сутки — расстояния для столь крошечных существ поистине марафонские.
Жгутики бывают гладкими или опушенными. Последние несут на своей поверхности выросты в виде тонких, диаметром не более 50 А, волосков (мастигонем) и неминерализованных, разных по форме и размерам чешуек. Опушенным обычно оказывается двигательный жгутик. Причем у некоторых водорослей (празинокладус, колеохете) жгутики одновременно несут и мастигопемы и чешуйки, но чаще имеется какой-то один тип образований. В отличие от чешуек мастигонемы располагаются очень упорядочение, параллельными рядами. И те, и другие закладываются в цитоплазме, в пузырьках с аморфным содержимым и в них переносятся на поверхность жгутика.
Несмотря на простоту внешнего облика, строение жгутика оказалось довольно сложным, что особенно хорошо видно при изучении его в электронном микроскопе. Сопоставление картин продольных и поперечных срезов позволило воссоздать в основных чертах принципы внутреннего устройства жгутика. Цилиндрическое, несколько сужающееся к вершине тело жгутика окружено снаружи топкой, порядка 90 А, мембраной, представляющей продолжение плазмалеммы, и заполнено веществом, которое по виду напоминает цитоплазму и в которое погружена система правильно ориентированных микротрубочек. Они располагаются по схеме 9 + 2, что расшифровывается следующим образом: по периферии цилиндра параллельно его поверхности размещается 9 пар тесно прилегающих друг к другу микротрубочек, а в центре его лежат две одиночные микротрубочки. Причем те и другие связаны между собой целой серией переходных структур, в расположении которых усматриваются свои закономерности, что, надо думать, имеет прямое отношение к специфической функции жгутика — осуществлять движение по определенной траектории. Выявленная в жгутиках у водорослей система расположения микротрубочек присуща подавляющему большинству оргапизмов не только растительного, но и животного происхождения. Отклонения в сторону упрощения или усложнения отмечаются крайне редко и обычно связаны, соответственно, с ослаблением или повышением частоты биения жгутика и с особенностями его движения.
При основании каждого жгутика лежит базальное тело. Оно имеет вид короткого, длиной около 2 мкм цилиндра, в периферической части которого располагается 9 триплетов микротрубочек, представляющих единую систему с периферическими парами микротрубочек жгутика. Обычно базальпое тело одного жгутика лежит под углом 90 или 180° к базальному телу другого. Иногда базальные тела соединяются перемычкой, что обеспечивает максимальную согласованность в их действиях.
От базального тела внутрь цитоплазмы довольно часто, но не всегда отходит один или несколько так называемых жгутиковых корешков или ризопластов. Ризопласт представляет собой сложную систему, состоящую из двух компонентов: из одиночных или собранных в пучок (по 2—9) микротрубочек, которые направляются к плазмалемме, выполняя там роль цитоскелетных образований, и из поперечно-исчерченной, фибриллярной по своей природе структуры, направляющейся к ядру и, как у хризомонад, там закрепляющейся. Последнее указывает на связь жгутиков с этой клеточной органеллой. Таким образом, двигательный аппарат клетки представляет сложную систему, состоящую из жгутиков, базальных тел и ризопластов.
У подвижных или потерявших подвилшость водорослей нередко обнаруживаются структуры, по своей внутренней организации очень напоминающие базальные тела. Они обычно располагаются около ядра, а во время его деления расходятся в противоположные стороны, образуя своеобразные полюсы, или центры, деления, за что и получили название центриолей. Центриоли — непременные структуры клеток животных организмов, а среди растений встречаются только у водорослей. Как показывают ультраструктурные исследования, центриоли, с одной стороны, связаны с ядром, а с другой — с двигательным аппаратом клетки, объединяя их в своеобразный комплекс.
Интересно, что если между двигательным аппаратом клетки и ядром в отдельных случаях все же можно наблюдать отчетливую структурную связь, то между двигательным аппаратом и стигмой, вопреки ожиданиям, таковой не обнаружено, хотя взаимодействие, пусть и опосредованное, безусловно должно существовать.
В процессе филогенетического развития водорослей жгутиковый аппарат, как это случилось и с пиреноидом, постепенно редуцировался. Это сопровождалось сначала частичной, а затем и полной утратой подвижности, распадением жгутиково-ядерного комплекса и исчезновением центриолей в клетке.
В настоящее время не вызывает сомнения, что водоросли дали начало наземным растениям, проложив им дорогу на сушу. Этот акт подготавливался всем ходом развития водорослей, в котором решающая роль, по-видимому, принадлежала клетке. Большое разнообразие строения, состава и свойств отдельных клеточных компонентов свидетельствует о том, что здесь шел интенсивный формообразовательный процесс. На его основе методом проб и ошибок отбирались наиболее перспективные структуры и создавался такой тип клеточной организации, который позволил растениям перейти к наземному образу жизни.
Поиск
Друзья сайта
  • Официальный блог
  • Сообщество uCoz
  • FAQ по системе
  • Инструкции для uCoz
  • Copyright MyCorp © 2024