Четверг, 28.03.2024
Мой сайт
Форма входа
Женский репродуктивный орган у красных водорослей — оогонии называют карпогоном. Это особая клетка, густо заполненная цитоплазмой и лишенная хлоропласта. Лишь у примитивных представителей флоридеевых и у бангиевых карпогон содержит окрашенный хлоропласт. Карпогон отличается весьма характерной, одинаковой для всех флоридеевых формой. Нижняя, или брюшная, часть клетки имеет конусовидную форму, верхняя вытягивается, образуя более или менее длинный трубчатый вырост. Вырост служит для улавливания спермациев, называют его трихогиной. Благодаря трихогине карпогон легко отличить от остальных клеток слоевища. Ядро карпогона, как правило, находится в брюшной части. Трихогина может быть короткой и кеглевидной или длинной, узкой и спирально закрученной. У бангиевых собственно трихогина еще отсутствует, а иногда карпогоны имеют лишь короткие сосочкообразные выросты — прообраз будущей трихогины. Поэтому карпогон бангиевых до оплодотворения трудно отличить от обычных вегетативных клеток, тем более что им может стать любая клетка слоевища, точно так же как зто происходит при образовании спермациев и моноспор.
Далеко не у всех флоридеевых карпогон развивается как отдельная клетка. Гораздо чаще образуется короткая клеточная нить, состоящая из бесцветных клеток, заполненных, как и карпогон, гомогенной цитоплазмой, а уже собственно карпогон развивается как конечная клетка этой нити, или карпогон ной ветви (рис. 160, 1). Клетку, от которой отходит карпогонная ветвь, называют несущей или базальной; в состав карпогонной ветви она не входит.
Карпотонные ветви флоридеевых играют важную роль в процессе размножения, так как принимают активное участие в развитии карпогона после оплодотворения. Число клеток в карпогонной ветви всегда небольшое, но непостоянное у разных групп багрянок. Если проследить эти изменения от наиболее примитивных к высокоорганизованным представителям класса флоридеевых, то можно заметить, что у низкоорганизованных немалиевых и гелидиевых карпогонная ветвь еще отсутствует и имеется только одна клетка карпогона. У криптонемиевых карпогонная ветвь, будучи еще структурой малоспециализированной, характеризуется, с одной стороны, сравнительной многоклеточностыо, а с другой — непостоянным числом клеток. При этом у менее специализированных форм из порядков криптонемиевых и гигартиновых встречаются даже разветвленные карпогонные ветви. В порядках родимениевых и церамиевых число клеток в карпогонной ветви уменьшается до 3—4 и становится уже более постоянным даже для крупных таксонов.
Почти у всех флоридеевых карпогонная ветвь образуется как специальная боковая веточка во внутренней части корового слоя. Только у низкоорганизованных немалиевых она соответствует обычной боковой веточке слоевища. У багрянок с плотным слоевищем карпогон оказывается погруженным, и только трихогина достигает поверхности слоевища и выступает над ней. У багрянок со свободно нитчатым строением карпогон занимает открытое положение. Строение карпогонной ветви и характер ее образования сильно варьируют у разных групп водорослей и служат одним из главных отличительных признаков в систематике багрянок.
Когда принесенные водой спермации соприкасаются с вершиной трихогины, оболочки их в месте соприкосновения растворяются и ядро спермация перетекает в полость трихогины. Передвигаясь по пей, оно попадает в брюшную часть карпогона и там сливается с его ядром. После оплодотворения карпогон отделяется от трихогины специальной пробкой, и вскоре трихогина отмирает. Оплодотворенная яйцеклетка остается заключенной в оболочку карпогона и собственной оболочки не образует. Этот факт свидетельствует о вероятном отсутствии в эволюции багрянок подвижных женских половых клеток.
Зигота, не проходя периода покоя, вскоре начинает прорастать. Обычно у водорослей она развивается непосредственно в новые растения, принадлежащие уже к бесполому поколению, т. е. в спорофиты. У красных водорослей, в отличие от всех остальных, зигота, прежде чем дать начало спорофиту, претерпевает сложное развитие, в результате которого образуются особые споры, дающие начало спорофиту. Называют эти споры карноспорами. Они представляют собой голые, лишенные жгутиков клетки, неподвижные или изредка обнаруживающие амебоидные движения. Перед началом прорастания они одеваются оболочкой. Клетки, в которых образуются карпоспоры, называют карпоспорангиями. В каждом карпоспорангии формируется по одной карпоспоре.
У бангиевых процесс превращения зиготы в карпоспоры весьма прост: после оплодотворения карпогон делится с образованием 4— 32 карпоспор.
У флоридеевых развитие зиготы — сложный и многообразный процесс, в котором, кроме карпогона, участвуют многие специальные клетки. Этот процесс протекает неодинаково у разных багрянок, в каждой группе со своими особенностями и многочисленными деталями. Поэтому здесь целесообразно остановиться только на основных чертах развития зиготы.
После оплодотворения карпогона развиваются специальные нити, которые несут карпоспорангии. Эти нити состоят из небольшого числа клеток, называют их нитями гонимобласта. В наиболее простом случае —у водорослей из порядка немалиевых ителидиевых — оплодотворенный карпогон отчленяет от себя несколько боковых клеток, которые, делясь, дают пучок нитей гонимобласта; конечные клетки этих нитей превращаются в карпоспорангии. Иными словами, применительно к этим водорослям можно говорить о непосредственном развитии нитей гонимобласта из карпогона.
У подавляющего большинства флоридеевых оплодотворенный карпогон вначале сливается с особыми клетками, богатыми питательными веществами, и только после этого развивается гонимобласт. Иногда после оплодотворения карпогон делится, и уже отчленившаяся от него клетка участвует в процессе слияния. Слияние может быть полным или частичным. Клетки, с которыми сливается карпогон, в литературе часто называют ауксиллярными. Но это не совсем верно. По мере того как изучались процессы развития зиготы, было установлено, что клетки, с которыми сливается карпогон, выполняют разную роль и занимают разное положение. Среди них следует различать два типа клеток: просто питающие клетки, которые образуются до или после оплодотворения и служат только для питания развивающегося гонимобласта, и настоящие ауксиллярные клетки. Последние также функционируют как питающие клетки, но их главная и чрезвычайно важная роль состоит в том, что они представляют собой исходную клетку, от которой начинается развитие гонимобласта. Иными словами, у тех багрянок, которые имеют ауксиллярные клетки, гонимобласт развивается не из карпогона, а из ауксиллярной клетки. Этому процессу обязательно предшествует слияние карпогона с ауксиллярной клеткой. Слияние осуществляется при помощи специальных нитей или выростов, которые отходят от карпогона и тянутся, пока не соединятся с ауксиллярной клеткой. Эти нити называют соединительными. Так как далеко не всегда ауксиллярные клетки располагаются вблизи карпогона, соединительные нити могут достигать значительной длины и состоять из большого числа клеток. По этим питям ядро оплодотворенного карпогона передвигается и переходит в ауксиллярную клетку; слияния ядер при этом не происходит. В этом состоит основное назначение соединительных нитей.
Ауксиллярные клетки отсутствуют в порядках немалиевых и гелидиевых, но имеются в остальных порядках класса флоридеевых. Ауксиллярные клетки характеризуются богатым содержимым и крупными размерами. Место и время их возникновения различны у разных багрянок. Они могут развиваться на нитях корового слоя и от внутренних клеток слоевища, вблизи или в удалении от карпогона, до оплодотворения или после него.
Все эти особенности имеют большое значение для систематики флоридеевых. Можно предположить, что развитие системы ауксиллярных клеток и карпогонной ветви шло независимо в каждом из порядков, но везде связь ауксиллярной системы с карпогоном становилась все более тесной. У багрянок, уже обладающих ауксиллярными клетками, но стоящих еще на низкой ступени организации, они развиваются независимо от карпогонной ветви и бывают удалены от нее на значительное расстояние; образование их не приурочено к процессу оплодотворения: они возникают до него. У этих водорослей соединительные нити развиты очень сильно. По мере дальнейшего развития ауксиллярные клетки начинают возникать в непосредственной близости от карпогонной ветви и образуют с ней уже единую структуру. Соединительные нити заметно укорачиваются, редуцируются и в конечном итоге представляют собой лишь короткий неклеточный отросток карпогона. В тех случаях, когда ауксиллярные клетки развиваются вместе с карпогонной ветвью, образуя единую систему нитей, и оплодотворенный карпогон сливается со своей ауксиллярной клеткой, мы говорим о прокарпе. На ранних этапах развития прокарпа карпогон необязательно сливается с рядом расположенной ауксиллярной клеткой; соединительные нити могут простираться дальше и соединяться с ауксиллярными клетками соседних прокарпов.
На следующей ступени ауксиллярные клетки развиваются от той же клетки, что и карпогонные ветви, и только после оплодотворения карпогона.
Таким образом, можно выделить четыре типа настоящих ауксиллярных клеток:
1. Ауксиллярные клетки развиваются перед оплодотворением как отдельные клетки на специальных клеточных нитях — это тип криптонемиевых водорослей.
2. Ауксиллярными клетками служат обычные иптеркалярные клетки слоевища, как правило, клетки внутренней коры, и образуются они перед оплодотворением; это тип гигартиновых.
3. Ауксиллярные клетки отчленяются перед оплодотворением от дочерней клетки несущей клетки карпогонной ветви; этот тип характерен для родимениевых.
4. Ауксиллярные клетки отчленяются от несущей клетки карпогонной ветви только после оплодотворения.
Просто питающие клетки поставляют питательные вещества из материнского растения благодаря полному или частичному слиянию с соединительными нитями или нитями развивающегося гонимобласта. Когда питающие клетки собраны в большом количестве и их собрания хорошо очерчены, можно говорить о питающей ткани. Питающие клетки встречаются у всех флоридеевых, тогда как типичные ауксиллярные клетки характерны только для четырех порядков из шести.
Итак, у наиболее примитивных представителей класса флоридеевых развитие гонимобласта связано только с карпогонной ветвью. Затем возникают специальные питающие клетки, которые частично сливаются с развивающимися нитями гонимобласта и обеспечивают их питательными веществами. Позднее образуется ауксиллярная систе.ма, которая существует наряду с питающими клетками. Постепенно роль проводника питательных веществ полностью берет на себя ауксиллярная клетка и просто питающая ткань редуцируется. Ауксиллярная система также становится менее громоздкой и более тесно связанной по месту и времени возникновения с оплодотворенным карпогопом.
Развитие гонимобласта заключается в образовании системы клеточпых нитей. Созревая, клетки нитей превращаются в карпоспоры. Различаются багрянки, у которых в карпоспоры превращаются конечные клетки нитей гонимобласта, и багрянки, у которых карпоспоры располагаются цепочкой, так как они образованы рядом клеток. У некоторых флоридеевых все клетки гонимобласта преобразуются в карпоспоры. Зрелый гопимобласт называют цистокарпом. Строго говоря, под цистокарпом следует понимать не только сам гопимобласт, но и окружающую его вегетативную ткань, когда она имеет определепное морфологическое и анатомическое строение и образует обертку гонимобласта. Обертка создается клетками коровых нитей или клетками, расположенными рядом с карпогонными ветвями.
Место возникновения цистокарпов, их форма, характер оболочки, способ выхода карпоспор — все эти признаки имеют важное значение для разграничения родов. Обычно цистокарпы располагаются в молодых частях растений — на ветвях последних порядков или участках близ вершины слоевища. У форм со свободно нитчатым строением они располагаются на поверхности ветвей в виде шаровидных скоплений клеток. Формы с плотным строением характеризуются погруженными или полупогруженными цистокарпами. Они имеют бугорчатую, шаровидную или кувшинообразную форму, и выступая над поверхностью слоевища, часто хорошо заметны даже невооруженным глазом. Для выхода карпоспор в обертке цистокарпа образуются специальные отверстия — одна или несколько пор. Однако пор может и пе быть, тогда карпоспоры выходят после разрушения внешней оболочки цистокарпа.
Циклы развития. Как мы видели, красные водоросли размножаются половым и бесполым путем. Оба способа взаимосвязаны и обычно сменяют друг друга в ходе жизненного цикла багрянок. В подавляющем большинстве случаев органы полового и бесполого размножения расположены на разных растениях. Споры, служащие для бесполого размножения (моноспоры, тетраспоры, биспоры и т. п.), образуются на растениях-спорофитах, оогонии и сперматангии — на гаметофитах; при этом у большинства багрянок существуют мужские и женские гаметофиты. Иными словами, половая и бесполая формы развития представлены обычно самостоятельными свободноживущими поколениями. Однако по мере изучения циклов развития водорослей различных видов все чаще отмечаются случаи, когда одна форма развития возникает на другой, и тогда на одном и том же индивидууме можно найти и тетраспоры, и органы полового размножения. Механизмы этого явления пока остаются невыясненными.
В литературе о циклах развития водорослей, особенно в иностранной, гаметофит и спорофит часто называют поколениями. Это было бы верно, если бы половое поколение обязательно сменялось бесполым. Но такая строгая смена происходит далеко не всегда. Сплошь и рядом у разных водорослей и гаметофит, и спорофит могут воспроизводить себя в течение нескольких поколений. Поэтому, касаясь вопроса о циклах развития красных водорослей, мы будем говорить о смене форм развития, а не о смене поколений.
Вопрос о циклах развития красных водорослей — один из самых интересных и трудных в альгологии. Ученых интересует не только характер циклов развития сам по себе, его особенности у разных видов, но, главное, происхождение и эволюция этого явления у водорослей отдела Rhodophyla. Говоря о цикле развития, обычно имеют в виду два аспекта этого явления — морфологическую смену форм развития и цитологическую. Особенности цитологического цикла определяются местом редукционного деления и соотношением диплоидной и гаплоидной фаз. Часто у водорослей морфологические изменения происходят независимо от цитологических, но у красных водорослей эти явления, по-видимому, взаимосвязаны.
У багрянок существует несколько типов циклов развития. В подавляющем большинстве случаев происходит смена трех форм развития: тетраспорофита, гаметофита и карпоспорофита. При этом карпоспорофитом называют гонимобласт с карпоспорами, который принято считать самостоятельным поколением, ведущим паразитический образ жизни на женском гаметофите и потому морфологически редуцированным. В этом цикле имеются две свободноживущие формы развития — тетраспорофит и гаметофиты. Редукционное деление происходит при образовании тетраспор. Следовательно, тетраспоры и возникающие из них гаметофиты представляют собой гаплоидную фазу, тогда как зигота, карпоспорофит и тетраспорофит относятся к диплоидной фазе.
Такой цикл развития представлен у багрянок двумя разновидностями. Гаметофиты и тетраспорофит могут иметь совершенно одинаковое морфологическое строение. Этот тип был впервые открыт у полисифонии, поэтому его так называют — тип Polysiphonia. У других багрянок слоевище тетраспорофита редуцировано по сравнению с гаметофитом и сильно отличается от него по строению. Часто в таких случаях спорофит представлен стелющимися или корковидными растениями. Ярким примером подобного цикла с так называемой гетероморфной сменой форм развития служит цикл развития порфиры. У этой водоросли нластипчатые крупные гаметофиты, т. е. то, что мы обычно называем порфирой, сменяются микроскопическими стелющимися спорофитами, построенными из однорядных нитей.
Среди филлофоровых (порядок гигартиновых) наряду с видами, цикл развития которых проходит по типу полисифонии, есть виды с очень своеобразным укороченным циклом. На крупных свободноживущих растениях — гаметофитах после оплодотворения развиваются нематеции с тетраспорами, а карпоспорофит отсутствует. Этот цикл можно объяснить морфологической редукцией не только тетраспорофита, но и карпоспорофита. Последний редуцируется до зиготы, которая непосредственно превращается в карпоспору. Та прорастает как паразит тут же, не отделяясь от гаметофита, в тетраспорофит, тоже морфологически редуцированный. Он напоминает нити нематеция, собранные в виде подушек и шариков на поверхности слоевища. До тех пор пока не был изучен цикл развития этих водорослей, редуцированные тетраспорофиты принимали за самостоятельные организмы.
Редукция гаметофитов в цикле развития красных водорослей встречается гораздо реже. Обычно она выражается в недоразвитии гаметофита и прорастании его на тетраспорофите.
До последнего времени считали, что у красных водорослей имеются два принципиально отличных типа циклов развития. Кроме уже описанного, в котором участвуют три формы развития, а редукционное деление происходит при образовании тетраспор, существует другой, при котором тетраспорофит отсутствует, а имеется только одна свободноживущая форма развития — гаметофит с паразитирующим на нем карпоспорофитом. Полагали, что редукционное деление в этом цикле происходит сразу после оплодотворения, в самом начале прорастания зиготы, и, следовательно, весь цикл проходит в гаплоидной фазе. Однако недавние исследования показали, что единственное место, где происходит редукционное деление, — тетраспорангии, и поэтому в цикле развития всегда представлены две цитологические фазы — гаплоидный гаметофит и диплоидные карпоспорофит и тетраспорофит. Кроме того, оказалось, что у большинства видов, которые, как считалось, в природе были представлены только гаметофитом и карпоспорофитом, имеется и тетраспорофит. Эти тетраспорофиты — очень мелкие, сильно редуцированные растеньица с весьма отличающейся от гаметофита и карпоспорофита структурой, поэтому исследователи либо не замечали их, либо считали другими организмами.
Таким образом, в цикле развития всех флоридеевых происходит смена трех форм развития, представленных как в гаплоидной, так и в диплоидной фазе. Но, как мы видели, не всегда все эти формы развиты одинаково и являются свободноживущими организмами. Какой же тип цикла развития следует считать наиболее примитивным и исходным для всего существующего многообразия циклов развития багрянок? Большинство исследователей сходится на том, что первоначальный цикл развития заключался в смене трех морфологически одинаковых форм развития, которые существовали независимо одна от другой. Зигота покидала материнское растение и прорастала в свободноживущий карпоспорофит.
Следует сказать, что такого рода цикла развития, принимаемого учеными за исходный, в природе не существует. Это — гипотетический цикл, выведенный на основе логических умозаключений. Принимая за исходное состояние свободное существование морфологически развитого карпоспорофита, ученые считают, что позднее в процессе эволюции карпоспорофит перешел к паразитическому образу жизни на гаметофите, в результате чего возник цикл развития типа полисифонии. И наконец, дальнейшая эволюция привела к образованию гетероморфных циклов развития, когда гаметофит и тетраспорофит заметно различаются по строению и по степени морфологического развития. Можно ли безоговорочно согласиться с этими представлениями об эволюции циклов развития красных водорослей? Отсутствие гипотетического исходного цикла развития в природе даже у самых примитивных современных водорослей из класса флоридеевых заставляет усомниться в действительном его существовании в истории багрянок. Кроме того, ничего подобного нет в других отделах водорослей, где, как правило, зигота развивается в спорофит, и цикл развития состоит из смены двух форм — гаметофита и спорофита. Зигота багрянок не образует собственной оболочки и развивается в стенках карпогона. Не говорит ли это о том, что зигота никогда не покидала гаметофит?
Таким образом, гипотезу об эволюции циклов развития красных водорослей, принятую в настоящее время большинством специалистов, нельзя считать до конца обоснованной. Не исключена вероятность того, что карпоспорофит багрянок — более позднее эволюционное образование, и первоначальный цикл состоял из двух форм развития.
Происхождение красных водорослей
В ископаемом состоянии сохранились лишь немногие багрянки и преимущественно среди обызвествленных форм. Корковидные кораллиновые известны начиная с мела, причем многие из них с трудом можно отличить от современных. Членистые кораллиновые представлены в кайнозое вымершими видами существующих в настоящее время родов.
Найдено значительное число ископаемых форм, относимых к отдельному семейству соленопоровых, которые отмечаются от ордовика до триаса. Однако ни строение этих водорослей, ни их систематическое положение окончательно не выяснены.
На основании этих немногочисленных палеонтологических свидетельств невозможно ответить на вопрос о происхождении багрянок.
Очевидно лишь то, что это очень древняя группа. Многие ученые полагают, что она возникла еще во время археозойской эры. Сравнение с другими водорослями также не проясняет вопроса об их происхождении и родственных связях, так как эта своеобразная группа занимает весьма обособленное место среди водорослей. Некоторое сходство можно обнаружить только с сине-зелеными водорослями. Характерные для красных водорослей пигменты фикоэритрин и фикоцианин найдены, кроме них, только у сине-зеленых. Багрянковый крахмал близок к крахмалу сине-зеленых. В обеих группах отсутствуют подвижные стадии. Сейчас принято считать, что это сходство не случайно, и многие специалисты выводят самые примитивные багрянки, у которых еще нет полового процесса (класс бангиевых), из сине-зеленых. Класс флоридеевых выводят из более высокоорганизованных бангиевых, уже обладающих половым процессом. Однако эту гипотезу нельзя считать достаточно обоснованной.
Дело в том, что пигменты в той и другой группах отличаются по строению. Кроме того, у багрянок имеется специфический хлорофилл d, отсутствующий у сине-зеленых. Поэтому нельзя исключать и другую гипотезу, согласно которой оба отдела имеют самостоятельное происхождение и не связаны непосредственным родством. Возможно, что сходство пигментов объясняется лишь тем, что обе группы водорослей возникли в одну и ту же геологическую эпоху в сходных условиях освещения, которое отличалось от современного по качеству и было, по-видимому, гораздо более слабым: ведь билипротеины способствуют восприятию малых количеств света.
Распространение красных водорослей
Красные водоросли — типичные морские растения. В морях Мирового океана они распространены более широко и представлены более разнообразно, чем бурые и зеленые водоросли. Но, в отличие от бурых водорослей, багрянки иногда встречаются и в пресных водах. Они живут в прудах и реках, лужах и озерах, однако предпочитают холодные быстротекущие воды. Самые известные пресноводные багрянки — это многочисленные виды батрахоспермума. Интересно, что в континентальных водоемах растут представители примитивных, наименее специализированных групп, тогда как высокоорганизованные красные водоросли сосредоточены в море. К пресноводным багрянкам относится также небольшое число наземных обитателей. Колонии порфиридиума можно встретить в виде красноватых слизистых налетов на различных влажных поверхностях — на стенках оранжерей, на почве, по краям садовых луж. Пресноводные красные водоросли редко бывают красного цвета, обычно они зеленые, голубые или даже буровато-черные.
В море красные водоросли встречаются повсеместно, в самых разных условиях. Как и другие крупные донные водоросли, они поселяются только на твердых неподвижных грунтах, поскольку рыхлые — песок, галька, мелкий щебень — вследствие своей легкой подвижности непригодны для существования макроскопических форм. Субстратом для красных водорослей служат обычно скалы, рифы, валуны, каменистые россыпи, а также разнообразные искусственные сооружения и другие водоросли.
У флоридеевых широко распространены явления эпифитизма и паразитизма. Многочисленные багрянки—эпифиты используют другие водоросли (в том числе и красные) только как субстрат, т. е. прикрепляются к их поверхности. Но у некоторых форм взаимоотношения становятся более тесными, зто проявляется в приуроченности эпифита к определенному хозяину и в проникновении его базальной части внутрь ткани хозяина. Таким образом, намечается переход от эпифитного к эндофитному образу жизни. Эндофитизм может быть частичным или полным. В последнем случае все слоевище водоросли растет внутри слоевища другой водоросли и только нити с органами размножения выходят на ее поверхность.
Об эндофитах мы говорим в том случае, когда водоросль погружена в другое растение, но продолжает питаться автотрофно, за счет фотосинтеза. Однако есть немало багрянок, которые ведут паразитический и полупаразитический образ жизни; они не только погружены в ткани хозяина, но и питаются за их счет. Как эндофиты, так и паразиты отличаются редуцированным слоевищем, выступающим над поверхностью хозяина в виде шариков или лопастных образований. Весьма интересно, что большинство паразитических форм среди красных водорослей по систематическому положению очень близки к водоросли-хозяину. Они относятся не только к тому же порядку, но даже к одному и тому же семейству. Это тем более поразительно, что красные водоросли растут в богатых видами сообществах, где имеются широкие возможности для выбора хозяина. Причины этого интересного явления остаются пока невыясненными.
Диапазон глубин, на которых обитают багрянки, заметно шире, чем у бурых водорослей. Дополнительные красные пигменты помогают усваивать им небольшое количество света, и благодаря этому багрянки могут расти на значительных глубинах. Там, где имеются подходящие грунты и хорошая прозрачность воды, они достигают глубины 100—200 м. И все же гораздо чаще заросли красных водорослей, так же как и всех макрофитов, кончаются на глубине 20—40 м. Это связано не столько со светом, сколько с отсутствием на больших глубинах твердых грунтов.
Красные водоросли обильно развиваются и в верхних горизонтах моря, в том числе и на литорали. Здесь они подвергаются сильному освещению, а во время отлива — и действию прямой солнечной радиации. В условиях сильного освещения цвет багрянок сильно меняется. В их окраске появляются бурые, желтые, зеленые тона. Это обусловлено изменением в составе пигментов и увеличением роли хлорофилла. Изменение окраски в зависимости от света — процесс обратимый. Даже сухие образцы, пролежавшие некоторое время в гербарии, при отсутствии света приобретали более интенсивную окраску. В тропиках, где инсоляция настолько сильна, что порой оказывается губительной, многие багрянки уже не способны расти на литорали и спускаются в сублитораль.
Не только свет обусловливает вертикальное распределение багрянок. С глубиной меняются температура, динамическое действие воды, количество питательных веществ. На литорали происходит периодическая смена водной среды на воздушную, в связи с чем здесь резко меняются все условия, в первую очередь температура и соленость. Многие багрянки хорошо приспособились к жизни в этой своеобразной зоне моря. Зимой они промерзают, омываются пресной дождевой водой, во время отлива высыхают, становясь хрупкими и ломкими, но когда вновь наступает прилив, оказываются вполне жизнеспособными. Особенно резкие колебания среды характерны для верхних горизонтов литорали и расположенной выше зоны заплесков и брызг. Здесь живут лишь очень немногие виды и среди них несколько багрянок. На открытых скалистых мысах, где постоянно действует прибой, выше других водорослей поднимаются бангия, порфира, глойопелтис и некоторые другие. Таким образом, и верхняя граница распространения багрянок выше, чем бурых водорослей.
Красные водоросли характеризуются чрезвычайно широким географическим распространением. Они растут во всех морях Мирового океана от тропиков до полюсов. Наиболее разнообразно они представлены в тропиках и по числу видов заметно превосходят здесь бурые и зеленые водоросли. В умеренных морях роль их также остается значительной, хотя доля во всей флоре несколько снижается вследствие более обильного по сравнению с тропиками развития здесь бурых водорослей. По направлению к высоким широтам общее число видов багрянок постепенно уменьшается и в Арктическом бассейне резко падает. Тропические багрянки, как правило, мелкие организмы, тогда как в умеренных широтах они могут достигать значительных размеров, хотя и уступают в этом более крупным бурым водорослям.
Красные водоросли играют заметную роль в жизни моря. Они являются важными компонентами биоценозов, нередко доминируя в различных сообществах и определяя характер растительности. Наряду с другими красные водоросли — важный источник органического вещества в море и пища для морских животных. Клетки размножения — тетраспоры, карпоспоры ит. п., образующиеся в большом количестве, формируют часть фитопланктона прибрежной части моря. Установлено, что одно растение родимении продырявленной (Rhodymenia pertusa), которое может достигать в длину 1 м, продуцирует 12 000 000 карпоспор, а один тетраспорофит этого же вида производит 100 000 000 тетраспор. Известковые кораллиновые водоросли играют важную роль в создании коралловых рифов. Они оказывают цементирующее действие и способствуют поддержанию рифовой структуры, без чего риф не мог бы существовать как единое образование.
Использование красных водорослей
Красные водоросли широко используются человеком в хозяйстве и быту. Многие багрянки не только съедобны, но и очень полезны. Из них готовят салаты, приправы, гарниры к мясу и рыбе, варят супы. Нередко едят сушеными или засахаренными. Первое место среди съедобных багрянок занимают родимения и порфира, распространенные во многих наших морях. К сожалению, в отличие от других приморских стран, в СССР употребление водорослей в пищу почти не принято, хотя известно, что водоросли — весьма полезные растения, содержащие многие жизненно важные вещества, и что запасы водорослей в наших морях огромны. Охотнее других водоросли употребляют в пищу жители побережья Тихого океана. В Японии даже развито промышленное культивирование порфиры в естественных условиях — своего рода морское сельское хозяйство. В прибрежной полосе на мелководье для поселения порфиры готовят дополнительные площади, укладывая на них камни или пучки ветвей, или растягивают специальные сети из толстых веревок, закрепляя их на бамбуковых шестах так, чтобы они держались у поверхности воды. Эти сети сплошь обрастают порфирой.
Промышленное использование красных водорослей основывается на присутствии в их оболочках фикоколлоидов — слизистых веществ из группы полисахаридов. Самый ценный продукт, получаемый из красных водорослей и имеющий очень широкое применение,— агар. В Японии он известен с 1760 г. До второй мировой войны агар добывали почти исключительно из гелидиума. В настоящее время его производят из большого числа видов; только в Японии используют около 30 видов агарофитов. В СССР сырьем для агара служит анфельция. Производство его организовано на Дальнем Востоке и на Белом море. По своим физическим свойствам агар похож на животный желатин, но имеет совсем другое химическое строение. Преимущество его перед желатином в том, что он остается твердым при более высокой температуре. Агар используют в микробиологии для приготовления сред при культивировании микроорганизмов. Его применяют как лекарство при расстройствах кишечника, добавляют вместо крахмала в хлеб для больных диабетом; на агаре делают капсулы и таблетки с аптибиотиками, витаминами, сульфопрепаратами, особенно когда требуется их медленное рассасывание. Самое широкое применение находит агар в пищевой промышленности. На нем готовят желе, мармелад, мягкие конфеты, варенье, так как он предохраняет их от засахаривания; его используют также при изготовлении мясных и рыбных консервов в желе, для очистки вин.
Из других фикоколлоидов багрянок известны каррагинин и агароид. Каррагинин получают главным образом из хондруса на побережье Атлантического океана. Первыми хондрус начали использовать жители Северной Ирландии, поэтому он известен под названием «ирландский мох». Агароид добывают в СССР из черноморской водоросли филлофоры, получают его и в ряде других стран.
Кроме того, красные водоросли вместе с другими водорослями используют для производства водорослевой муки, которая идет на корм скоту и как удобрение.
Классификация красных водорослей
Современная система красных водорослей основывается на исследованиях крупного шведского альголога Кюлина. В целом ее принимают все альгологи, противоречия возникают только в отношении систематического положения некоторых мелких таксонов. Принцип, положенный в основу классификации,— строение женских репродуктивных органов и процесс развития гонимобласта. По этой системе все красные водоросли делятся на 2 класса — класс бангиевых и класс флоридеевых. Каждый из них содержит по 6 порядков. Основная масса багрянок относится к классу флоридеевых — в нем 49 семейств.
Поиск
Друзья сайта
  • Официальный блог
  • Сообщество uCoz
  • FAQ по системе
  • Инструкции для uCoz
  • Copyright MyCorp © 2024